
Contents lists available at ScienceDirect

Decision Support Systems

journal homepage: www.elsevier.com/locate/dss

A decision support system for home dialysis visit scheduling and nurse
routing
Ahmet Kandakoglua, Antoine Sauréa,*, Wojtek Michalowskia, Michael Aquinob, Janet Grahamb,
Brendan McCormickb
a Telfer School of Management, University of Ottawa, 55 Laurier Ave. East, Ottawa, ON K1N 6N5, Canada
bDivision of Nephrology, The Ottawa Hospital, 1967 Riverside Dr., Ottawa, ON K1H 7W9, Canada

A R T I C L E I N F O

Keywords:
Healthcare
Home dialysis
Visit scheduling
Nurse routing
Mathematical programming
Decision support system

A B S T R A C T

Over the last years home dialysis has become the preferred treatment option for some patients with kidney
failure. However, determining efficient and effective daily home-dialysis service plans imposes multiple chal-
lenges to hospital administrators, as it is a complex task with a number of interrelated decisions. These decisions
are about the number of nurses required for daily visits and their travel itineraries, and involve multiple (often
conflicting) objectives.
Working together with physicians and administrators from The Ottawa Hospital (TOH) in Canada, we have

developed a system intended to support administrators of nephrology departments in creating daily visit sche-
dules and routes for nurses assisting with dialysis treatment in patients' homes. The decision support system,
called Home Dialysis Scheduler System (HDSS), employs a mixed-integer linear programming model to create
daily nurse itineraries that minimize the cost of providing home dialysis for a pre-specified group of patients. In
developing this model, we also considered nurses' workload balance, overtime work, need for mealtime breaks
(lunch or dinner, depending on shift times), restrictions and preferences associated with the time of the visits,
and different types of services provided to patients. The model was validated using data provided by the Division
of Nephrology at TOH. The interface of the HDSS was developed following the principles of user-centred design
and validated with a group of end-users. In the validation stage, daily visit schedules and nurse routes generated
by the HDSS were compared to nurse itineraries created manually by hospital administrators. The use of the
HDSS resulted in improved workload distribution among nurses, simpler routes, and reduced total distance
travelled — which translates into lower costs for the home dialysis program. In this paper, we provide details
about the mixed-integer linear programming model, describe the HDSS, and discuss its implementation results
and managerial implications.

1. Introduction

Dialysis is a life-sustaining treatment for patients with end-stage
kidney disease. There are two basic types of dialysis: hemodialysis and
peritoneal dialysis. Hemodialysis involves purifying blood directly
through an extracorporeal dialysis machine, whereas peritoneal dialysis
involves filling up the peritoneal cavity with sterile fluid and allowing
the peritoneal membrane to act as a natural filter. A patient can com-
plete peritoneal dialysis at home while hemodialysis is usually done by
trained healthcare professionals in a dialysis centre or hospital.
Although clinical outcomes of both types of dialysis are similar, peri-
toneal dialysis offers the possibility of a more flexible treatment

schedule, greater convenience for patients, and represents a more cost-
effective option [14, 18, 34] . However, despite its benefits, the broader
use of in-home dialysis is limited by the inability of some older and frail
patients to perform the treatment independently [3, 15, 36] . For this
reason, and with the ultimate goal of expanding the delivery of in-home
peritoneal dialysis (hereafter simply called “home dialysis”), many
healthcare authorities around the world provide hospitals with addi-
tional funding to support regional home-dialysis programs. Patients in
these programs receive nursing visits up to twice a day to assist them
with the use of the dialysis equipment [7, 21, 22] . This additional
financial support has resulted in an increase in the utilization of home
dialysis services, for example, in Ontario, Canada. However, recent
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changes in funding has shifted the responsibility for providing home
dialysis visits from regional healthcare authorities to hospitals, thereby
increasing the need for decision support tools that help make an effi-
cient use of the resources available at these programs.
Many home dialysis patients receive daily visits from nurses. A

nursing visit is required to set up a peritoneal cycler (dialysis machine)
and, in some cases, to connect and disconnect the patient from the
cycler. Some of these visits are time sensitive as patients need to be
connected to the cycler for a specific period of time. Home dialysis
patients quickly become familiar with the nurses who visit them at
home and, consequently, continuity of care by the same care provider
plays an important role in patient satisfaction. If, on top of these con-
siderations, we take into account other aspects of home dialysis de-
livery such as geographical location, shift times of the nurses, manda-
tory mealtime breaks (lunch or dinner, depending on the specific shift
times), overtime work, and workload balance, then determining an
efficient daily home dialysis visit schedule becomes a challenging task
that is very difficult and time consuming if done manually.
This paper describes a decision support system, called Home

Dialysis Scheduler System (HDSS), designed to help hospital adminis-
trators with the scheduling of home dialysis visits and the routing of
nurses. This system uses a mixed-integer linear programming (MILP)
model to optimize nurse itineraries with an objective function that
combines multiple criteria: total distance travelled by all nurses, travel
and overtime costs, number of nurses required to visit all patients, and
workload balance across nurses. The objective function is minimized
and each individual criterion is weighted to reflect its relative im-
portance as requested by hospital administrators. The optimization
model also considers patient-nurse compatibility restrictions (e.g., re-
quired skill level and case load complexity), nurse availability (i.e., shift
times, mealtime breaks, and overtime work), patient preferences for
specific visit times, and visit durations. Hospital administrators interact
with the HDSS using a spreadsheet-like user interface. To the best of our
knowledge, the HDSS is the first-of-its-kind decision support system
available to hospital administrators in charge of home dialysis pro-
grams.
The remainder of this paper is organized as follows: Section 2 de-

scribes home dialysis delivery as implemented by the Division of

Nephrology at The Ottawa Hospital (TOH) in Ontario, Canada.
Section 3 reviews related relevant work and Section 4 introduces the
MILP model that is at the core of the HDSS. Section 5 describes the
development of the HDSS and Section 6 discusses the use of the system
for visit scheduling and nurse routing in Ottawa, Ontario, Canada.
Section 6 also reviews some of the managerial implications associated
with the use of the system. Finally, in Section 7, the paper concludes
with final remarks.

2. Problem definition

The home dialysis program at TOH is one of the largest dialysis
programs in North America. It currently serves more than 220 patients
and involves close to 18 full-time nurses. Before the development of the
HDSS, visit scheduling and nurse routing decisions were made manu-
ally by the home-dialysis clinical care facilitator.
Every day, the care facilitator first needs to prepare a daily schedule

for nurses either to provide in-home patient visits or to deliver teaching
and clinical support to hemodialysis patients at a nephrology clinic
located at one of TOH campuses. After having this information, and for
each nurse, the care facilitator schedules the order in which patients are
visited by creating routes depending on where the nurse lives and
where the homes of the patients to be visited are located. Last minute
changes to the schedule are either taken up by an available nurse who is
close to the specific patient's home, or by one of the nurses assigned to
clinic duties. The schedule for a given day is developed one day in
advance and provided to the nurses before they finish their daily shift.
Considering that the number of patients that need to be served and the
number of available nurses are relatively stable throughout the week,
developing a daily schedule instead of weekly or monthly is acceptable
at this point of time.
During the set-up of the home dialysis program it was decided that

nurses work in pre-defined teams that serve three areas of Ottawa and
the National Capital Region: western, eastern, and central areas. Each
area has a specific team of nurses providing care to patients that are
geographically assigned to the area based on their home address.
Nurses are given their schedules and routes depending on the team they
are assigned to and work shifts (morning or evening). In the event of an

Sets

P : Set of patients
N : Set of nurses
V : Set P N

Indices

i, j : A patient, i,j ∈ P
k : A nurse (nurse home), k ∈ N
l, m : A location (patient or nurse home), l,m ∈ V

Input parameters

dlm : Distance from location l ∈ V to location m ∈ V[km]
tlm : Travel time from location l ∈ V to location m ∈ V[min]
ai : Earliest allowed service start time for patient i [min]
bi : Latest allowed service start time for patient i [min]
sti : Visit duration for patient i [min]
tk : Travel time from nurse k’s home to the main nephrology

clinic [min]
wsk : Shift start time of nurse k [min]
wek : Shift end time of nurse k [min]

alk : Earliest allowed mealtime break start time for nurse k
[min]

blk : Latest allowed mealtime break end time for nurse k [min]
Rik : 1 if nurse k can visit patient i, and 0 otherwise
LB : Mealtime break duration [min]
KM : Unit travel cost [dollars/km]
OV : Unit overtime cost [dollars/min]
M : A large positive constant (commonly known as big-M)

Decision variables

xlmk : 1 if nurse k directly visits location m ∈ V after location l ∈
V, and 0 otherwise

yik : 1 if nurse k takes a break right before visiting patient i,
and 0 otherwise

yik′ : 1 if nurse k takes a break right after visiting patient i, and
0 otherwise

sik : Service start time for patient i if he/she is visited by nurse
k

lk : Start time of the mealtime break of nurse k
overk : Amount of overtime required from nurse k
μ : Nurse workload balance variable
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emergency, nurses assigned to work in the home dialysis clinic can be
requested to provide in-home service to any patient in any area. These
nurses are called “floating nurses” (or hub nurses) and their services are
also used to minimize the need for overtime work from the nurses
visiting patients at their homes. In addition, there are some nurses
working the evening shift who are assigned to a specific team during
the daytime, but that can provide service to any patient after the start
time of the evening shift. In that sense, these nurses can be considered
as a special case of floating nurses. Existence of these three different
work practices (overtime work, floating nurse from the clinic, and
evening nurse) provides flexibility for the hospital administrator to plan
visits to all patients who need to be visited on any given day.
The home dialysis program at TOH considers two main criteria

when scheduling visits and routing nurses: balanced workload across
the nurses visiting patients' homes, and the shortest possible total dis-
tance travelled by these nurses. The rationale for the second criterion is
to minimize the program delivery cost by controlling the amount of
compensation being paid to each nurse for the distance travelled.
Moreover, minimizing the total distance travelled and thus increasing
the time available for delivering service has an indirect effect on re-
ducing the need for overtime work. In some circumstances, such as
when there is an increased demand at the hemodialysis clinic or limited
nurse availability, the program manager might be interested in finding
the minimum number of nurses required to perform the daily visits at
patients' homes.
Currently, the care facilitator needs to schedule daily visits for about

40-50 patients who are served by about 9 nurses. Considering that the
roster of patients and available nurses changes from day to day, this is a
very time-consuming task that requires significant skills including
knowledge of possible routes, travel times, starting locations of avail-
able nurses, and the types of services to be provided to individual pa-
tients. This last piece is especially important as some patients may re-
quire two daily visits to be connected and disconnected from the cycler,
one visit to be either connected or disconnected, or regular main-
tenance and check-up visits, while others may require teaching with
each visit taking a different amount of nursing time.

3. Related work

In general, home health care (HHC) involves visits to patients'
homes by different care providers (social workers, physiotherapists,

nurses, etc.) and often represents an interesting scheduling and routing
problem (SRP). Recent research on SRP in HHC is summarized in
Refs. [11], [5], and [6]. These review papers present problem classifi-
cations based on solution methodology, planning time horizon, objec-
tives, and constraints.
The SRP is classified as either single-period or multi-period de-

pending on the planning time horizon [11]. While a single-period
problem focuses on a single working day, a multi-period problem
considers multiple days over a week or a month. Furthermore, SRP
solution methodologies can be classified as exact, (meta)heuristic, or
hybrid (combination of exact and heuristic methods). The SRP con-
sidered in this paper is a single-period problem modelled as a MILP
solved using an exact method.
Following Ref. [11], this section systematizes recent work on SRP in

HHC according to: (1) general characteristics such as planning time
horizon, solution methodology, data used, decision support tool de-
velopment, and (2) objectives and constraints considered in the pro-
blem formulation.
A summary of recent studies in terms of general problem char-

acteristics is presented in Table 1. Most of these studies focus on single-
period optimization models solved by (meta)heuristics using data pro-
vided by HHC organizations. Only two of them involved the develop-
ment of a decision support system to facilitate the use of the proposed
model in practice [8].
Types of objectives and constraints considered in these recent stu-

dies are presented in Table 2. It can be seen that travel time, total cost,
travel distance, wait times, overtime and care provider preferences are
the most commonly used objectives. Although the number of care
providers needed to deliver service is clearly an important cost factor,
only a few models in the literature minimize the number of providers
assigned to daily service [1, 27, 38] . In terms of constraints, most of the
reviewed studies consider service time windows, skill level require-
ments, and working time regulations. However, other important prac-
tical considerations such as timing of mealtime breaks, overtime work,
workload balance, start time of first and last visits have received limited
attention.
This study deals with all the important aspects of the SRP as sum-

marized in Tables 1 and 2. Moreover, it is unique as it:

• Considers home dialysis as a specific HHC problem. Only Issabakhsh
et al. [13] have considered this problem before, but the authors used

Table 1
Classification of recent HHC routing and scheduling literature according to general problem characteristics.

Article Planning horizon Solution method Data DSS development

[2] Single-period Exact Randomly generated
[31] Single-period Hybrid (Exact/Metaheuristic) HHC organization
[32] Single-period Hybrid (Exact/Metaheuristic) HHC organization
[24] Single-period Exact HHC organization
[29] Multi-period Exact/Metaheuristic HHC organization
[1] Single-period Hybrid (Exact/Metaheuristic) Randomly generated
[16] Single-period Exact HHC organization
[17] Single-period Hybrid (Exact/Metaheuristic) Randomly generated
[20] Single-period Metaheuristic Randomly generated
[33] Multi-period Exact/Metaheuristic HHC organization
[10] Single-period Hybrid (Exact/Metaheuristic) HHC organization
[12] Single-period Metaheuristic HHC organization
[19] Single-period Heuristic HHC organization
[38] Single-period Hybrid (Exact/Metaheuristic) Literature
[8] Multi-period Hybrid (Exact/Metaheuristic) HHC organization
[27] Multi-period Exact HHC organization
[4] Single-period Exact/Metaheuristic HHC organization
[25] Single-period Heuristic HHC organization
[26] Single-period Metaheuristic HHC organization
[37] Single-period Hybrid (Exact/Metaheuristic) HHC organization
[35] Multi-period Exact HHC organization
[13] Multi-period Exact Randomly generated
This study Single-period Exact HHC organization
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fictitious data and did not develop any decision support tool;
• Describes the development of a decision support tool to facilitate the
use of the underlying optimization model in practice. This is similar
to Refs. [9] and [8];
• Allows for flexibility in considering multiple optimization criteria
through the parametrization of the different components of the
objective function; and
• Introduces the notion of a “floating nurse” to allow for cross-area
service when needed and to meet emergency requests or changes in
daily requirements.

4. Mathematical model

We consider a single-period model that allows us to determine a set
of daily nurse itineraries. A nurse itinerary defines when a specific
nurse should leave home, visit each patient assigned to him/her, have a
mealtime break (if any), and return home. The sets of patients and
nurses are denoted by P={1,2,…,p} and N={1,2,…,n}, respectively,
where p is the total number of patients to be visited on a given day and
n is the total number of nurses available that day. The travel distance
and the travel time from location l (patient or nurse home) to location m
(patient or nurse home), l≠m, are denoted dlm and tlm, respectively. As
visits can take place at different times, we assume that travel distances
and travel times are fixed during the day and a constant compensation
time is utilized to deal with the variations in these parameters due to
traffic conditions and delays due to accidents, road works, and weather
conditions. The travel cost is of KM dollars per km. The visit to patient i
∈ P requires sti minutes and can only occur in the time interval [ai,bi],
where ai and bi are the earliest and the latest service start times for this
patient. The initial location of nurse k ∈ N is his/her home address,
which defines the starting and ending location of any possible itinerary
assigned to him/her. The interval [wsk,wek] defines the time window
during which nurse k is available to visit patients. A mealtime break has
a duration of LB minutes and nurse k can only take such a break in the
time interval [alk,blk]. The travel time from nurse k’s home to the main
nephrology clinic is denoted by tk. This parameter allows us to consider
commute times into the definition of nurse itineraries. For example, a

nurse living 20min away from the clinic (tk=20) and starting his/her
shift at 08:00 cannot visit a patient who lives 30min away from her/his
home at 08:00. This is because this nurse would normally leave home
around 07:40 to commute to the nephrology clinic and thus could only
arrive at the patient's home around 08:10.
Nurses are organized in teams covering different service areas and

can only visit patients who live in their respective areas. The parameter
Rik is equal to 1 if nurse k can visit patient i, and 0 otherwise. Since the
number of available nurses and their working hours are limited, in
some cases, the regular-hour service capacity may not be sufficient to
visit all patients. For this reason, nurses are allowed to work overtime at
a cost of OV per minute. In addition, floating and evening nurses, as
explained in Section 2, help deal with the use of overtime in some si-
tuations. The value of parameter Rik for these types of nurses is equal to
1 for all patients. Thus, overtime work and floating and evening nurses
are alternate ways of guaranteeing a solution to the optimization pro-
blem. The workload of nurse k, denoted by wk, is defined as the sum of
his/her travel times, service times, and mealtime break duration.
Patients requiring two visits a day are modelled as requiring two

separate visits with specific earliest and latest service start times, which
are defined based on the required time between the connect and dis-
connect from the cycler tasks. The rationale behind this is that some
patients may require to be connected to the cycler in the evening and
disconnected the next morning, and our model only deals with one day
at a time. Due to shift constraints and/or nurse availability, it is not
always possible to assign the same nurse to visit a specific patient. For
this reason, we assume that continuity of care is achieved by having a
patient be visited only by nurses in the team covering the patient's
service area.
Seven types of decision variables are used in the MILP model. The

binary routing variable xlmk takes the value of 1 if nurse k directly visits
location m after location l, and 0 otherwise. The binary mealtime break
variable yik is equal to 1 if nurse k takes a mealtime break right before
visiting patient i, and 0 otherwise. Similarly, the binary mealtime break
variable yik′ is equal to 1 if nurse k takes a mealtime break right after
visiting patient i, and 0 otherwise. The non-negative variable sik de-
termines the service start time for patient i if he/she is visited by nurse

Table 2
Classification of recent HHC routing and scheduling literature according to objectives and constraints.

Objectives Constraints

Travel time Total cost Travel
distance

Wait time Overtime Preference # of
nurses

Balance of
workload

Time
windows

Skill
requirements

Work
regulations

Breaks Overtime

[2]
[31]
[32]
[24]
[29]
[1]
[16]
[17]
[20]
[33]
[10]
[12]
[19]
[38]
[8]
[27]
[4]
[25]
[26]
[37]
[35]
[13]
This study
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k. The non-negative variable lk is used to determine the start time of the
mealtime break of nurse k (if needed). The non-negative variable overk
represents the expected amount of overtime required from nurse k in
minutes. Finally, the non-negative auxiliary variable μ is used to ensure
a balanced workload across nurses. A summary of the notation de-
scribed above along with the complete formulation of the home dialysis
problem is presented below:

Objective function
We consider an objective function that combines four criteria: the

total distance travelled by all the nurses (D), the total travel and
overtime cost (C), the number of nurses required to visit all patients (R),
and the maximum workload across all the nurses (A). The logic behind
the last criterion is to avoid solutions where a few nurses perform a
large number of visits due to their proximity to patients while others are
less busy. The goal is to minimize the weighted sum of these four cri-
teria according to the weights λ1 to λ4 as follows:

× + × +

+ × + ×

d x KM d x OV over

x µ

min
k N l V m V

lm lmk

D
k N l V m V

lm lmk
k N

k

C

k N l V
klk

R
A

1 2

3 4

(1)

The higher the value of the weight, the more important the specific
criterion. By allowing changes in the values of λ1 to λ4, the HDSS
provides program managers with the possibility of expressing the re-
lative importance associated with each optimization criterion. For ex-
ample, if a manager considers only one criterion to be relevant, then the
rest can be ignored by setting the corresponding weight values equal to
0. In addition, a hierarchical solution approach can be used by setting
strongly different weight values for different criteria. For example,
setting λ3 to a very high value, λ1 to a much lower value, and λ2 and λ4
to 0 gives priority first to the minimization of the number of nurses and
then to the total distance travelled. In this setting, among all the solu-
tions with the minimal number of nurses, the one with the shortest
distance travelled would be selected. If a manager's only concern is
direct cost minimization, then the value of λ2 should be set equal to 1
and all the other weight values should be equal to 0.

Constraints
The minimization problem is subject to several constraints.

Constraint (2) ensures that each patient is visited by a nurse.

=x i P1,
k N l V

ilk
(2)

Constraint (3) represents inflow-outflow conditions. It guarantees
that the nurse assigned to patient i leaves the patient to visit another
patient or returns home after service completion.

=x x i P k N, ,
l V

lik
l V

ilk
(3)

Constraints (4) and (5) make sure that all nurses visiting at least one
patient (i.e., active nurses) start and finish their workday at home. Note
that the model does not necessarily assign patients to all nurses (less
than or equal to conditions) as one of the optimization objectives is to
minimize the number of nurses required to visit all patients.

x k N1,
i P

kik
(4)

x k N1,
i P

ikk
(5)

Constraint (6) ensures that each active nurse takes a mealtime break
during the day. Constraint (7) makes sure that a nurse can only take a
break before or after visiting patient i if he/she has been assigned to
that patient.

+ =y y x k N,
i P

ik
i P

ik
i P

ikk
(6)

+ =y y x i P k N, ,ik ik
l V

ilk
(7)

Constraint (8) determines the service start time for a patient visited
by a specific nurse based on the service start time, service duration and
travel time associated with the previous patient visited by the same
nurse. This constraint guarantees route feasibility with respect to ser-
vice start times and patient locations as it enforces strictly increasing
service start times along the route of a nurse. In doing so, it also avoids
cycles in the routes because a return to an already visited patient would
violate the constraint associated with the start time of the previous
visit.

+ + +s st t s M x i j P k N(1 ), , ,ik i ij jk ijk (8)

Constraints (9)– (12) determine the start times of the mealtime
breaks for all active nurses depending on whether they take the break
right before or right after visiting a specific patient. Similar to Con-
straint (8), Constraints (11)– (12) ensure route feasibility with respect
to mealtime break times, service start times, and travel times.

+ +l LBy s M y i P k N(1 ), ,k ik ik ik (9)

+ + + +s st t x y l M x y

i j P k N

( )( 1) (2 ),

, ,
ik i ij ijk jk k ijk jk

(10)

+ + + +l LB t x y s M x y

i j P k N

( )( 1) (2 ),

, ,
k ij ijk ik jk ijk ik

(11)

+ +s st y l M y i P k N(1 ), ,ik i ik k ik (12)

Constraint (13) guarantees that patient visits start within the cor-
responding earliest and latest service start times. This is considered a
hard constraint as connecting and disconnecting patients from dialysis
machines in a time-sensitive manner is critical.

a s b i P k N, ,i ik i (13)

Similarly, Constraint (14) ensures that nurses take their mealtime
breaks within pre-specified time intervals. This constraint allows the
system to enforce mandatory breaks for nurses who work shifts of more
than four hours.

al l bl k N,k k k (14)

Constraints (15) and (16) make sure that nurses complete their
itineraries within the duration of their shifts. Constraint (15) guarantees
that the start time of the first visit for each active nurse considers the
travel time from the nurse's home to the main nephrology clinic. It
allows the model to avoid infeasible itineraries that start far from the
nurse's home. Similarly, Constraint (16) states the relationship between
the service start time of the last visit for each nurse and the travel time
from the last patient visited to the nurse's home. It also helps the model
determine the amount of overtime required to complete the itineraries.

ws M x t t i P k N(1 ) max { , 0}, ,k kik ki k (15)

+ + + +we M x over s st t t
i P k N

(1 ) max {( ), 0},
,

k ikk k ik i ik k

(16)

Constraint (17), together with the objective function, helps the
model determine the maximum workload across nurses (μ). Individual
nurse workloads are computed as the sum of the corresponding total
service time, total travel time, and mealtime break duration. This
constraint is required to obtain a balanced workload assignment.

+ + + +LB t x st t x t x µ k N( ) ,
i P

ki kik
i P j P

i ij ijk
i P

ik ikk

(17)
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Constraints (18) makes sure that nurses can only visit patients who
live in their coverage area. Please note that floating nurses are allowed
to provide service to all patients regardless of their geographical loca-
tion. Thus, the value of Rik for this type of nurse is equal to 1 for all
patients. Following the same logic, Constraint (19) state that nurses can
only have a mealtime break at the location of a patient they visit.

x R l V i P k N, , ,lik ik (18)

y y R i P k N, , ,ik ik ik (19)

Constraints (20) and (21) state the feasible values for the binary
routing and mealtime break decision variables.

x l m V k N{0, 1}, , ,lmk (20)

y y i P k N, {0, 1}, ,ik ik (21)

Finally, the non-negativity Constraints (22)– (24) define the domain
for the service start time, mealtime break time, overtime, and workload
balance decision variables.

s i P k N0, ,ik (22)

l over k N, 0,k k (23)

µ 0 (24)

5. HDSS

The HDSS was developed using rapid prototyping combined with
user-centred interface design. At each stage, the HDSS prototype to-
gether with the user interface option were presented to the hospital
administrator (immediate end-user), management, and clinical leader-
ship of the home dialysis program. Each modelling assumption and
associated course of action was validated and each user interface option
was presented and discussed with the help of mock-ups. Once consensus
among the group members was reached, the system prototype was re-
vised and a new one was created.

5.1. Analysis and design

This iterative stage started with learning about the requirements for
the MILP model and expected functionality of the HDSS. It included a
number of sessions where different versions of the model, HDSS

prototypes and user interface mock-ups were presented and discussed.
As a result of each session, revisions were introduced, described, tested
on real data, and a short briefing document was communicated to
hospital stakeholders. Simultaneously, alternative versions of the HDSS
were developed to facilitate uncovering other not explicitly stated
system requirements. When steady state was achieved (i.e., no more
requirements were identified and the interface design was approved),
we proceeded to the development of a full HDSS.
The development of the MILP model followed a slightly different

process. It started with learning about basic requirements expected
from the visit schedules and nurse routes. This allowed us to define
decision variables, optimization criteria, and a core set of constraints.
Having this information, we were able to establish data requirements
for a full model development. As the MILP model plays a critical role in
the HDSS, we presented, separately, alternative solutions derived for
differently weighted criteria in the objective function, different values
of the service times associated with different types of visits, and dif-
ferent assumptions regarding nurses' workday and scheduled breaks. By
doing so, we were able to identify exceptions and additional require-
ments to be satisfied by the MILP model solutions.
The optimization-based decision support systems previously devel-

oped by Refs. [28], [30] and [23] for vehicle routing and scheduling
problems gave us some ideas for the design of the HDSS.

5.2. HDSS architecture and implementation

The HDSS was designed as a stand-alone, single installation system
with all the required software and database locally stored. The HDSS
architecture consists of: a user interface module, a visualization
module, a report generation module, an optimization module, a data
module, and a map module. These modules are arranged and syn-
chronized in three layers comprising presentation, execution, and data
components, as shown in Fig. 1. The HDSS was implemented using Java
8.0 and open source libraries such as JXMapViewer, JGraphHopper,
JFreeChart, and Apache POI.
The data module reads and writes all the information needed for

generating visit schedules and nurse routes in a database. This is an
exchange module between the different data sources and the other
modules of the HDSS. The map module, which is based on the routing
library GraphHopper, generates travel distance and travel time in-
formation for all address pair combinations using OpenStreetMap data

Fig. 1. HDSS architecture.
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in Protocolbuffer Binary Format ( https://www.openstreetmap.org) and
stores it into the database. The core processing module of the HDSS, the
optimization module, reads information about patients and nurses,
optimization parameters, solver details, travel distances, and travel
times from the database; generates the MILP model; invokes the Gurobi
8.0 solver ( http://www.gurobi.com) to find an optimal solution to the
model; and decodes and writes the solution (i.e., nurse itineraries and/
or patient visit timetables) to the daily planning table in the database.
The report generation and the visualization modules, accessible via the
main user interface, are used together for presenting the optimal so-
lution and generating several customized map visualizations and re-
ports. For example, a nurse itinerary can be presented in a tabular
format and/or using a map display as shown in Fig. 2. These modules
have export capabilities that allow data exchange between the hospital
administrator and the program managers. Finally, the main user in-
terface module presented in Fig. 2 provides access to all the other
modules to generate daily visit schedules and nurse routes.

5.3. User interface and visualization

The user interface, which is illustrated in Fig. 2, combines graphical
and textual presentation and is divided into three major sections: the
main menu and quick access toolbar, the navigation tree, and the work
area. The main menu and quick access toolbar contain the menu and
buttons for basic tasks such as opening a daily plan, validating the input
for a daily plan, invoking the optimization solver to generate a daily
plan, exporting a solution, etc. The navigation tree, on the left side,
provides a simple way of representing a sequence of tasks for creating
daily visit schedules and nurse routes. The work area includes inter-
active spreadsheet-like forms and tables for data manipulation tasks
such as adding/removing patients, nurses and appointments. It also
provides charts, map visualizations (i.e., routes in the solution) and
reports required by the hospital administrator during daily operations.

6. Comparative evaluation

At the end of the system development cycle, we conducted a com-
parison of the schedules generated by the HDSS with those developed
manually by the hospital administrator. All computations reported here
were executed on a stationary computer with an Intel Core i3-2120
3.30 GHz processor with 4 GB RAM running the operating system

Windows 7 Enterprise (64-bit). The execution times never exceeded
3min.

6.1. Data

The comparison was first conducted for a typical week of 2018 and
then using eight weeks of daily data from June 1 to July 26, 2019.
During the typical week, a total of 53 different patients were visited,
which translated into 208 patient visits. These visits were performed by
a total of 15 different nurses. Daily details are provided in Table 3.
In each case, the data used by the care facilitator for daily sche-

duling and routing purposes was entered into the HDSS. This included
visit time-window preferences generated separately by the adminis-
trator who took into consideration information about the specific pa-
tients and types of visits. For example, if a patient required two visits
during the day, a realistic time window was assigned to ensure that the
patient was connected to the cycler for an acceptable amount of time.
Travel distance and travel time information was automatically gener-
ated by the HDSS map module. It was similar to what the care facil-
itator did while estimating the distances to be travelled by the nurses to
reach the different patient locations. Travel times did not account for
traffic conditions. This is because visits can take place at different times
of the day and therefore longer travel times during peak-hours are
compensated by shorter travel times during off-peak hours. However,
the system considers a constant compensation time to deal with the
variations in travel times due to traffic conditions and delays due to
accidents, road works, and weather conditions.

(a) Master nurse and patient database (b) Overall solution display

Fig. 2. Screenshots of the HDSS.

Table 3
Summary of the data used for the comparative evaluation for a typical week of
2018.

Day Number of nurses Number of patients

Monday 8 28
Tuesday 9 34
Wednesday 9 29
Thursday 9 34
Friday 9 34
Saturday 6 25
Sunday 6 24

A. Kandakoglu, et al. Decision Support Systems 130 (2020) 113224

7

https://www.openstreetmap.org
http://www.gurobi.com


6.2. Results

Considering that the home dialysis program management was pri-
marily interested in minimizing the total distance travelled by nurses
because of its direct cost implications (mileage costs and possible
overtime), the values of all the objective weights, except for the one
associated with the cost criterion, were set to zero. Table 4 presents the
results generated with the help of the HDSS and those generated
manually by the hospital administrator for a typical week of 2018. As
can be seen from the table, the use of the HDSS reduced the average
total distance travelled and the average total travel time by about 27%
and 25%, respectively. It is interesting to note that the optimized
schedules freed up an average of 1.3 nurses per day while meeting the
demand for visits. This finding was of special interest to the program
management because of the difficulties recruiting nurses to participate
in the home dialysis program and because of some other managerial
implications discussed later.
As an example, Fig. 3 shows the visit schedules and nurse routes

corresponding to Wednesday of that typical week. While the routes
created manually are intertwined, the ones generated with the help of
the HDSS are simpler and thus more efficient. Moreover, the HDSS al-
lows the care facilitator to experiment with the impact of team com-
position (assignment of nurses to teams) on the total distance travelled
and/or the total cost. After inspecting the HDSS schedule, we proposed
a revised team composition for Wednesday and this revision resulted in
an even better schedule that reduced the total distance travelled for that
day by 41% (results not shown).
Table 5 presents the results generated with the help of the HDSS and

those generated manually by the hospital administrator for a typical
week of 2018 when the second most important goal for the home dia-
lysis program management, balancing workload across nurses, is the
main objective considered in the analysis. In this case, the values of all

the objective weights, except for the one associated with the workload
balance criterion, were set to zero. We can see from Table 5 that
minimizing the maximum workload across nurses sometimes changes
the solution provided by the system. However, despite the increase in
the average total distance travelled, this alternative objective still al-
lows the HDSS to achieve great results in terms of efficiency. The de-
crease in the total distance travelled goes from 27% to 17% and the
reduction in the number of required nurses goes from 16% to 11%
under this objective.
Finally, Table 6 shows the results generated with the help of the

HDSS and those generated manually by the hospital administrator for
the other eight weeks of daily data considered in our analysis. As can be
seen from the table, the use of the HDSS reduced the average total
distance travelled and the average total travel time by about 38% and
33%, respectively. It is also important to note that the optimized

Table 4
Comparison of HDSS and manual results for a typical week of 2018 when the
primary goal is to minimize the total distance travelled.

Total distance travelled
(km)

Total travel time
(min)

Required nurses

Day Manual HDSS Manual HDSS Manual HDSS

Monday 930 693 895 721 8 6
Tuesday 1276 982 1153 879 9 8
Wednesday 1102 735 1072 665 9 7
Thursday 1223 955 1121 938 9 8
Friday 1253 793 1134 795 9 8
Saturday 931 705 807 639 6 5
Sunday 919 731 848 655 6 5
Total 7634 5594 7030 5292 56 47
Savings 27% 25% 16%

(a) Manual (b) HDSS

Fig. 3. Visit schedules and nurse routes corresponding to Wednesday.

Table 5
Comparison of HDSS and manual results for a typical week of 2018 when the
primary goal is to balance workload across nurses.

Total distance travelled
(km)

Total travel time
(min)

Required nurses

Day Manual HDSS Manual HDSS Manual HDSS

Monday 930 693 895 718 8 6
Tuesday 1276 1112 1153 956 9 9
Wednesday 1102 1002 1072 786 9 8
Thursday 1223 1059 1121 987 9 8
Friday 1253 1019 1134 946 9 8
Saturday 931 708 807 639 6 5
Sunday 919 747 848 661 6 6
Total 7634 6340 7030 5693 56 50
Savings 17% 19% 11%

Table 6
Comparison of HDSS and manual results for eight weeks of daily data (from
June 1 to July 26, 2019) when the primary goal is to minimize the total distance
travelled.

Total distance travelled
(km)

Total travel time (min) Required nurses

Week Manual HDSS Manual HDSS Manual HDSS

Week 1 11,549 7145 9536 6321 47 42
Week 2 10,726 6981 8917 6275 47 43
Week 3 10,600 6625 8700 6153 47 43
Week 4 11,310 7588 9098 6177 45 41
Week 5 9797 5791 8094 5275 44 39
Week 6 11,060 6561 9217 5980 47 41
Week 7 11,055 6651 9057 5866 47 41
Week 8 10,702 6346 8817 5996 47 41
Total 86,799 53,688 71,436 48,043 371 332
Savings 38% 33% 11%

A. Kandakoglu, et al. Decision Support Systems 130 (2020) 113224

8



schedules achieved these results with 11% fewer nurses per day while
meeting the demand for visits. Based on these results and a compen-
sation being paid to each nurse for the distance travelled of CAD 0.45
per km, we estimate the dialysis program could have saved almost CAD
1900 per week by using the HDSS, which translates into an estimated
annual cost reduction close to CAD 100,000.
In summary, the results above show how well the HDSS performs

and how scheduling and routing decisions can be improved in com-
parison to the manual approach. The HDSS and the schedules it gen-
erates were approved by the program management and the system is
currently being deployed for everyday use.

6.3. Managerial implications

In addition to significant cost reductions resulting from more effi-
cient visit scheduling and nurse routing decisions, we expect the daily
use of the HDSS will bring with it important managerial implications for
the workload of hospital administrators (immediate end-users) and
nursing staff. For the former, the use of the HDSS will free them up to
deal with other tasks that require more direct patient interaction such
as appointment booking and addressing patient queries. For the later,
the use of the HDSS will ensure that more nurses are available at the
nephrology clinic for teaching purposes and for dealing with patients
who can not receive care at home. From the home dialysis program
perspective, other anticipated benefits from the use of the HDSS include
reduced clerical rework, heightened visibility of nurses' daily workload,
increased adherence to clinical guidelines, improved nursing staff uti-
lization and coordination, and balanced workload. From the patient
perspective, we expect the daily use of the HDSS will allow earlier
appointment time confirmation and higher appointment time reliability
(patients will know in advance the time of their appointments) and
systematic consideration of patient preferences and restrictions for visit
times.
To date, the overall managerial implications of using the HDSS have

been in improving quality of care rather saving money. The system has
allowed nurses to spend more time providing care to dialysis patients.
In addition, the HDSS has allowed the home dialysis program man-
agement to assign hospital administrators and nursing staff to more
important clinical and administrative tasks.
The home dialysis program at TOH is relatively new and as part of

the program assessment the HDSS has been used both as an example of
a successful collaboration between academia and management and as a
tool that can be implemented across similar programs in the province.
Thus, the development and implementation of the HDSS has helped
with the decision of scaling the program to other regions in the pro-
vince as it is expected to improve patient care and provide a significant
reduction in the expenditure associated with travel distances. We be-
lieve the HDSS and the knowledge gained from its development are
definitely transferable to other home dialysis clinics, in particular to
those in the province and across Canada, that operate similarly.
Location-specific processes will determine the extent of the im-
plementability of the HDSS, although the general principle of increased
efficiency in the creation of visit schedules and nurse routes should
extend across practices. Some factors that would play a significant role
in this process are the size of the clinic (i.e., number of patients and
nurses, geographical area, etc.) and the specific scheduling practices.

6.4. Limitations

The HDSS and its optimization model have a number of limitations
starting with the fact that the optimization model is a single-period one.
This implies that a patient who requires assistance with the cycler
(connection and disconnection) and for whom the connection visit

needs to take place in the evening will have his/her disconnection visit
on a different day, which corresponds to a different schedule. In addi-
tion to this, a patient who requires two nursing visits on the same day
(connection and disconnection) is considered as two independent pa-
tients requiring one visit each. The time windows for these two patients
are defined so there is a minimum wait time between the two visits.
Dealing with these two situations requires manual tracing and re-
cording by the care facilitator. Furthermore, the HDSS is purely a
scheduling system and works under the assumption that the roster of
nurses is given. Linking the HDSS with some rostering system might
provide better results in terms of meeting the demand for home and
satisfying additional staffing requirements at the main nephrology
clinic.
Additionally, while having mutually exclusive teams of nurses and

patients allows us to address continuity of care needs and improve
model execution times, this problem setting may result in sub-optimal
solutions due the number of nurse-to-patient assignment restrictions.
Also, we believe that using deterministic travel and service times ade-
quately reflects reality in this particular situation. However, one can
argue that the use of stochastic values should make the model closer to
how the actual schedules are developed. While we partially addressed
the variability in travel and service times by introducing a compensa-
tion time as a model parameter, we suspect that the use of stochastic
values in the model may result in unacceptably long execution times.

7. Conclusion

The use of home dialysis has increased over the last years because of
the flexibility it provides to patients and the fact that is a cost-effective
option for healthcare systems. Determining good visit schedules and
nurse routes to meet patient requirements is one of the key tasks per-
formed by home-dialysis care facilitators. This is because these deci-
sions drive the program's operating cost, impact the quality of the
service provided to patients, and influence nurses' job satisfaction.
In this paper, we describe the development of a decision support

system, called Home Dialysis Scheduler System (HDSS), to address the
real-world visit scheduling and nurse routing problem faced by the
Home Dialysis Program run by the Division of Nephrology at The
Ottawa Hospital (TOH). The HDSS utilizes a multi-criteria mixed-in-
teger linear programming (MILP) model that takes into account the
total distance travelled by all the nurses, the total cost (travel and
overtime), the number of nurses required to visit all patients, and the
workload balance across nurses as four objectives that can be optimized
individually or in a weighted manner. The HDSS also allows con-
sidering other aspects of the problem such as patient-nurse compat-
ibility restrictions (e.g, case complexity and geographical location),
nurse availability (e.g., shift times, mealtime breaks, and overtime),
service durations, travel times, travel distances, and multiple route start
locations.
The HDSS and its use have been approved by the program man-

agement. In addition to producing schedules with significantly lower
total distance travelled and balanced nurse workloads, the HDSS allows
sensitivity analyses and a quick response to new operational require-
ments while reducing the tediousness and uncertainties inherent in the
manual approach. It not only reduces the time spent in visit scheduling
and nurse routing tasks from hours to minutes but also provides a
graphical representation of the resulting itineraries in an appealing
manner that is easy to interpret by care facilitators and nurses. While
developed for TOH, the HDSS can be easily ported to home dialysis
programs at other hospitals and regions because of the general ap-
plicability of the MILP model and easy-to-use interface that allows to
edit all model parameters. The only additional task required will be the
one-time development of the location and distances tables to reflect
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local conditions (i.e., patient locations, nurse locations, and available
routes).
Nurse rostering and nurse routing problems in home health care

delivery are interrelated. Linking these two problems might provide
better results in terms of meeting the demand for visits and staffing
requirements for home care services. As one of our future research in-
itiatives, we plan to extend the HDSS to consider staffing and routing
problems simultaneously.
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